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COMPARTSON BETIWEEN PREDICTION AND EXPERIMENT FOR
ALL-MOVABLE WING AND BODY COMBINATIONS AT
SUPERSONIC SPEEDS - DRAG DUE TO LIFT AND

LTFT~-DRAG RATIO

By Elliott D. Katgen and William C. Pitts
SUMMARY

A method 1s presented for predicting the drag due to 1ift and the
lift-drag ratio of all-movable wing and hody combinstions and all-movable
wings in the presence of bodies at supersonic speeds. The method is
used to calculate these factors for configurations for which experimental
data are avellasble. Comparison of the calculated and experimental data
indicastes that the method can be used to predict the drag due to 1ift
and lift-drag ratio with sufficient accuracy for many design purposes.-
In general, the predicted drag-rise factors are lower than the experi-
mental values and the predicted lift-drag ratios are correspondingly
higher than the experimental values.

INTRODUCTION

. ama
vy

This report is the second of two reports on the cheracteristies of
all-movable wings corbined with bodies. The first report, reference 1,
treated 1ift, pltching moment, and hinge moment. It was shown in
reference 1 that the 1ift of a number of sll-moveble wing and bhody com-
binations of verious plan forms at supersonic speeds can be predicted
with reasonable accuracy by means of a simple, generalized method. The
purpose of the present report is to extend this method to the prediction
of the drag characteristics and to determine the spplicability of the
method by comparison with evailable experimental results.
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NOTATION

aspect ratio of exposed wing panels Joined together
plan-form area of body, square inches

chord of wing at any spanwise position, inches

frs c2dy
mean aerodynamic chord

» inches
[P cay
r

cross-flow section drag coefficient of a circular cylinder

465w,

increment in drag coefficient < Cp - CDmin)

minimum drag coefficient L

'experimental- minimum drag coefficient for o = 0 and & =

1ift coefficient —T:% )

Q55
- 3cy,
lift-curve slope for varieble o and fixed & —a—— , per radlan
o 4

Lo
1ift-curve slope for vaeriable 8 and fixed o < _S-GL>, per radian

increment in 1ift coefficient (CL - CLD 1 >
=Mln

lift-curve slope due to angle of attack of wing alone,
per radian

1ift coefficlent for minimum drag
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CLopt 1lift coefficient for maximum lift-drag ratio
Cr chord at wing-fuselage Jjuncture, inches
ct chord at wing tip, inches
D drag force, omitting base drasg, pounds
g gap between wing and body, inches
K LB(w) '
B(W) - for zero angle of attack and varying wing deflection
angle
Lw(B) :
kW(B) In for zero angle of attack and varying wing deflection
angle
Lp(w)
KB(W) for zero wing deflection angle and varying angle of
attack
R {¢:)) .
KW(B) T for zero wing deflection angle and varying angle of
attack
Iy
Ky E;
1 body length, inches
lg body length between wing trailing edge and body base, inches
e body length between tip of nose and wing leading edge, inches
L 1ift force, pounds
m cotangent of leading-edge sweep angle
Mg free-stream Mach number
a4y free-stream dynamic pressure, pounds per square inch
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r body radius at the wing position, inches

R resultant force, pounds

Re Reynolds humber based on wing mean aerodynamic chord .

8 semispan of wing-body combination --

SW area of exposed wing penels, square inches

Vo free-stream velocity, inches per second

X,y Cartesian coordinates

o angle of attack of body, radians unless otherwise specified
B NATICE]

BA effective aspect ratio

*
(BA) critical effective aspect ratio T

S wing deflection angle, radlans unless otherwlse specifled
A leading-edge sweep angle, degrees
c
A wing taper ratio <-¥E
Cr
1 correction for three-dimensional effects on body
Subscripis

B(W) body in presence of wing
C wing-body combination

N body nose, that part of the body forward of the leading edge
of the wing-body Juncture

W wilng alone
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W(B) wing in presence of bodyl

a a variable, 8 constant
5 3 variable, o constant
Ca wing-body combinstion with o wvariable, & constant

(Other compound subscripts to be interpreted similarly to Ca.)

THEORETTICAT. CONSIDERATIONS

The drag force dus to 1ift on an all-movable wing and body combina-
tion 1s determined by the 1ift or resultant forces on the components of
the combination and the inclination of the resultant forces., It was
shown In reference 1 that the 1ift coefficlents of the components of the
combinations in the linear range of angle of attack end wing deflection
angle are given by the followlng equations:

Oy = M(e) = + ku(s)®! (CLa>W (3
CLB(W) = [KB(W) a -+ kB(W)a] CLG'>W (2)
o, =Ky @ (Clu>w (3)

with the 1ift coefficient of the combination given by

“te = “tyis) * Clagw) T ®

The wing-alone lift-curve slope, (CLCL>W, can be obtained by linear-

theory or preferably from experimental results, if available. Linear-
theory results were used in the present report. The values of KN
were cobtained by the slender-body formula

- 2 (5)
chl <CL°">W 5

1Tn this report attention is focused on wings mounted on a section of

uniform diameter.
. [T

quMM@ ‘
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Charts for determining the other parameters of equations (1)
through (3), Ky(B)» KB(W)s kw(B)s and kp(y), are reproduced from
reference 1 as figures 1, 2, and 3. Values of KB(W) are glven in
figures 1 and 2., Figure 1 is to be used for low aspect ratio cases,
that is,

pA £ (pa)* = 4
(1+1) fg + 1)

For high aspect ratios, SA > (ﬁA)*, Kp(w) is given in figure 2.

There are several solutions avallable for determining kW(B)’
for exsmple, slender-body theory (fig. 1) for slender wing-body com-
binations with triangular wings and an exsct linear theory solution for
combinations with rectanguler wings (fig. 3). Figure 3 shows that
there is some difference between the two predictions, the maximum dif-
ference being sbout 10 percent, but generally the difference is much
less. The linear-theory values of kW(B) are to be used for rectangular
wings of effective aspect ratio 2 or greater. For the range of BA
between 2 and O, no linear-theory results for ky B) &re available.
However, as BA approaches zero the wing-body combination becomes more
slender, until at BA = 0 slender-body theory is exact for the combina-
tion. On the basls of these considerations kW(B% as given by slender-
body theory is to be used for all combinations with rectangular wings
with BA < 2. .

By use of reversibility theorems for combinations with cylindrical.
bodies, the following equation can be shown to be valid under the
assumptions of slender-body theory:

kp(w) = Kw(B) - Xu(B) (6)
The values of k as given by equation (6) are included in figure 1.
B(W)

Values of C, and CL5 of many combinations of all-movable wings
o

and bodies were predicted by the foregoing methods and compared with
experimental results in reference 1. The accuracy of the predicted CLa

was good in the linear range of angle of attack and wing deflection angle.
The predicted CLS tended to be higher than the experimental quantitles.

The geometric properties and 1lift characteristics for the combinations
anelyzed in reference 1 for which experimental drag date are available
are presented in table I. .
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Drag Charscteristics and Lift-Drag Ratio

In the present development, the drag due to 1ift of a combination
or its components is determined with the assumptions that the resultant
forces on the components are given by equations (1) through (3) and
that the resultant forces have the following inclinations (fig. L):

The resultant force on the wing is inclined at an angle o + & (no
leading-edge suction),® the resultant force on the body exclusive of
the body nose is inclined rearward at an angle «, and the resultant
force on the body nose acts at & rearward inclination of a/2, from
the vertical in accordance with slender-body theory. If it is assumed
that the skin friction remains constant with o or &, then for the com-
bination

ch =Cp, +{[KW(B) a + kW(B)B] (a+8)+[KB(W)a+kB(W)5] a+KNa2/2}<cLa>W
(7)

where Cp_ 1is the drag coefficient at a = 0° and 8 = 0°.

Typical drag curves for a combination (combination 10, table T)
with a variable for constant deflection angles of 0%, 7°, and 14° are
shown in figure 5. Theoretical drag curves calculated on the basls of
equation (7), using experimental values of CDo’ are also shown. It

can be seen that for the higher values of 3 the experimental values

of the minimum drag are underestimated by a large percentage (42 percent
for & = 1h°). A better prediction of minimum drag can be obtained by
considering the body-alone force due to cross-flow separation as dis-
cussed in reference 2. This is an approximation because the force on
the body of the wing-body combination is undoubtedly different from that
on the body alone. The increment in drag coefficient of the body alone
due to cross-flow separation as given in reference 2 is

(CD)p,cp. = 2 ot 1 koo (&)

Sy

2p1though linear-theory results indicate that leading-edge suction should
be realized for wings with subsonic leading edges, experience has shown
that theory and experiment are usually in better accord for wing-body
combinations if leading-edge suction is omitted for the wings.

E-.rt 'gT"GIIE\-Imw E i o
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This increment is added to the combination drag coefficlent given in
equation (7) and the result is shown in figure 5. The improvement in
the agreement between prediction and experiment for the minimum drag

at the higher values of 3 1is evident. At points other than near the
minimum drag, the theoretical curves for which the effect of cross flow
1ls omitted are In closer agreement with experiment than the curves

with the effect of cross flow included. This can be explained by the
following factors: (1) Near the minimum drasg point for lerge deflection
angles, the 1lift is negative on the body and positive on the wing and
the downwash field behind the wing tends to increase the cross-flow
separation on the rear of the body; (2) over most of the range of a
the 1ift on both the bedy and the wing is positive and the downwash
behind the wing decreases the eross flow. Thus, including a cross-flow
correction only in calculating the minimum drag point of the drag polar
is & step in the right direction. The desirability of including the
effect of cross flow in determining the minimum drag point, as 1s done
in this report, will be shown in a subsequent correlation chart. The
cross-flow correction is only importent when the angle of attack of the
body is large at the minimum drag point (i.e., for large values of 3).

If 8 1is constant and o is varied or if o 18 constant and &
is varied, the drag curve for a combination or a wing in the presence
of a body is a parabole of the form (see fig. 6)

::)2 <CL B CLD:min>2 (9)

Cp = CDmin *

where ACD/ACL2 is a constant called the drag-rise factor, which
defines the variation of the drag with lirt, that is,

ACD = CD - CDm:I.n

AC; 2 c c =
L ( L I'D=min)
The 1ift-drag ratio is givén by the equation

L
Cppyy + (ACD/ACL®) (cL - 1y minf

gl
]

(10)




NACA RM A52T30

The maximum 1lift-drag ratio is

. ) CLopt (11)
(D)ma.x Copys * (aCp/act®) (CLOP-[-, - CL_p:min)z

where Cr,.., the 1ift coefficient for (L/D)p..» 18 given by

“Dnin

Acp/ac®

2 (12)

CLopt - + CLD=min

The problem of predicting the drag curves and lift-drag ratio is
thus reduced to the determination of CDmin’ CLD— s &nd ACD/ACLE.

These parameters are glven below for wing-body combinations and wings
in the presence of bodies both for & variation of angle of attack with
constant wing deflection and for a variation of wing deflection with
constant angle of attack.

Variation with angle of attack.- If & 1is constant and a is
varied for the combination, equation (7) with the cross-flow term of
equation (8) added can be written

(CDmin>Ca = Cpg + {[KW(B) + Kp(y) + Ky/ 2} UDemin® +

A
2Ky (B) ®%=min * kw(B)Sa} (Cl.q,l’ + 'S-z' cde 1 |%pamin®l (13)

where

HREONETRENTIAL, T



- [KN+QKW(3)+2KB(N)] (CLa)W+./[K“+ﬂc"’(B)’_’2KB(w ]2 Lal, +2h-——cdc g KW(B)B(CL) 5l

a -
- 6(,A_/Su\\ eqg. 1 {,jé—\\
\NERS e NP/

The 1i1ft coefficlent for minimum dreg of the combinastion 1s

(CLD=min>Ca ={[Kw(3)+KB(w)+Kn] aDumin"'KW(B)B}(CIa)W + "AS'ECdc Iﬁ“fum (14)

The minimm drag coefficlent with the effect of cross flow omitted is

’ ) o + kg M) ( \ (15
(}D = Cp + (B) -
k O o [. ' 2Ky0(p) g (W) +KN_I )w
The drag-rise factor, neglecting cross flow, for the combination is
 ACp Ko (8) 5 (w) H ey
(e ™ =
ACT” /o

« 2 [me*KB(w)*‘KNT (CI“.)W

CT

PR oy

OEIBEY WH VOVN
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For the wing in the presence of the body
2
c = Op - —L—— [ - 8 (¢ ) 17)
( Dmin>W(B)a Do uKW(B) ki (B) KW(B)] <ch. ) (
1
(Clnmm)w(ma -3 S 5 | S(CLOQ, (18)
20_%_2> - - ~ " — (19)
L o
e S (), (T ()
Variation with wing deflection.- If 8 is varied and a is
constent, the following expression can be obtained from equation (T7):
_ o sl _Sim)” fp o
<0Dmin>cs = CDO"'[KW(B)"'KB(W)"'Kn/Q kr(a) a2 (CL“>W+ 5 cg, N la(zlo)

The 1ift coefficient for minimm drag of the combination becomes

K 2 A:
= _2w(B) it T o2
<CLD=min>05 ,}W(B)"‘KB(W)"'KN kw(B)] a (CI"I)W + 5 eg, M ﬂ“ (21)

and the drag-rise factor, regardless of whether the effect of cross flow
i1s included or not, can be obtained as

ACp ki7(B) <0L6> W(B)

A_C—LZ b Kq(B)° (CLG>W - (CL6>W(B)2 (22)

For the wing in the presence of the body,

<CDmin>W(B)8 = Cp, — m;(B) {Kw(B) - Xk, (B)]a o (CL“)W (23)

""“'c?mmm@@ .
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-

<0L3=mn>w(3)6 =% _[KW(B) - kW(B)] a <CL“>W (2k)

(25)

(B v ], T
ACIE Ar(BYs  Ew(m) (CLa)W (cLS)W(B)

Wing deflection for minimum drag at a given Cp.- The wing deflec~-

tion for minimum drag at a given 1ift coefficlent can be determined by
solving the following system of simmltaneous equations:

\
ac aC
D A L =0
o 3
o) . ocr, o
» = . ? (26)

with the constraining condition

S (R R

where A 1s a Lagranglan multiplier. If the effect of cross flow is
neglected, the drag coefficient is given by egquation (7) and the 1ift
coefficient is given in equation (26). Solution of the system of
equations (26) gives the wing deflection for minimum drag at a given
1ift coefficient as '

5 () — (@

2Ky (B)° [KW(B)+KB(W)+KN] - 2ky(p) [Kw(3)+KB(Q)+Kn]2+Kw(B)2KN

The angle of attack required to maintain the given 1ift coefficient 1ls
determined with the substitution of this value of & in eguations (26).
The minimum drag at the given 1ift coefficlent is determined with the
substitution of the values of « and & calculated by the above method
in equation (7). The procedure outlined above was carried out for the
combinations listed in table I. For most of the combinations, the wing

VDTt D
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deflection required for minimum drag due to 1ift at 1ift coefficients
above 0.25 was negative and so large as to be impractical becsuse of
the large angles’ of attack required. However, for some of the combina~
tlons the calculations indicated & small decrease in the drag due %o
1ift for moderate negative wing deflections compared to that for zero
deflection. Similar results were found in reference 3.

RESULTS AND DISCUSSION

The experimental -drag characteristics and 1lift-drag ratios of a
number of all-movable wing and body combinations (references 4 through 8)
have been investigated and compared with characteristics predicted by
the method discussed under Theoretical Considerations. The geometric
and aerodynamic properties of the combinations are summarized in table I.
Some of the experimental data avaeilable were not used in the present
report because of large uncertainties in the data.

Drag Characteristics

Variatlon with angle of attack.- Theoretical values of'(CDmin "’
and AC 2 heve been computed from eguations (13)
(CLD=min)Ca » and (ACp/ACTF) mp a (13),

(1), and (16) for the wing-body combinations and constant wing deflec-
tion angles listed in teble I. Experimental results are listed in the
table together with the computed quantities and both are shown in

figures T, 8, and 9. Theoretical values of <CDmin>C and Crpo min)
a = Ca

with the effect of cross flow omitted for & larger than T° are also

shown in figures 7 and 8. The degree of correlation is indicated by

the distance from the line of perfect agreement. The better agreement

between the experimental CDmin) and the theoretical results with
Ca

cross flow included is evlident. The experimental (CLD—min . scatter
= o

randomly a&bout the theoretical value of approximately zero. The sceatter

is nearly +0.035 and is due largely to asymmetry of the experimental

curves. Evidence of this 1s shown by the fact that the experimental

< é) Por 5 =0 1is sometimes as large as 0.025, even though the
CLD=mj Ca. .

configurations are symmetrical and the correct ( CLD min) must be zero.
)= Ca .

\“\‘F“.,?VO\__\'_!._-—+
CONFID:
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In figure 9, the average theoretical values of (ACD[ACLa)Ca,

except for the points bounded by a dashed line, are approximately

T percent less than the experimental values. The bounded points, for
which the theoretical value of (ASD/ACLE)Ca is as much as 37 percent
less than the experimental value, correspond to combination 16 of

table I. This configuration consists of a small rectangular tail at

the back end of a long body. For this configuration it is quite likely
that the transition point on the body moved forward with increasing
angle of attack, as 1t of‘ten does for & body alone (seeé for instance,
reference 9). This would cause an increase in.(ACD/ACL )Ca not pre-
dicted by the theory. This viscous effect would be reduced at full-
scale Reynolds numbers. The general tendency for the theoretical
(ASD/ACLa)Ca to be lower than the experimental values is possibly due,
to a lesser extent than for the bounded points of figure 9, to the
translition point on the body moving forward of the leading edge of the
wing-body Juncture with increasing angle of attack., Also, the correla-
tion would have been lmproved if the resultant force on the body nose
had been assumed to be perpendicular to the body axis instead of
inclined rearward at «f2 from the vertical in accordance with slender-
body theory.

A typlcal example of the it between an experimental drag curve
and & theoretical curve defined by the parameters (CDmin)Ca, CLD:min ch,’
and (ACD/ACLZ)CQ is shown in figure 10. The curves spply to combina~
tion 10 of table I. The agreement between the experimental and theoret-
ical drag curves is considered fair in that the predicted curves are
sufficiently accurate for many design purposes.

The drag data availlsble for wings in the presence of bodies are
shown in figures 11, 12, and 13 corresponding to combinations 17, 18,
and 19 of teble I. The agreement between theory and experiment for
these wings is at least as good as the agreement for the wing-body
combinations discussed above.

Vaeriatlon with wing deflection.- Experimental and theoretical
2
<cDmin)ca’ (CLD-.-.m:Ln s’ and (ACp/ACT, Jos @&re recorded in table I and

presented in the correlation plots of figures T, 8, and 9. The theoreti-

cal parameters were calculated using equations (20), (21), and (22).

Theoretical points wilth cross flow omitted for o larger than 7° are

also included in figures 7 and 8. The improvement in correlation with

cross flow lncluded is evident for both (FDmiﬁ> and CLD— ) .
=min

Although the theoretical (CDmin>ca’ <CLD=min)05’ and (ACp/AC2) s are

~
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in general lower thdn the experimental quantities and there is a good
deal of scatter for CAQD/ACLZ)CS, the agreement between theory and

) 2
experiment is consldered falr. The values of <éD in and (ACD/ACL )C6
. . 2
are not greatly different from the values of (mein>ca and CACD/ACL )Cm'
is alws positive for positive o and egter
However, <?LD )08 ¥ys peosit} ho) gr

than (CLD=min)CQ' Also, the variation of'(CLD= : )CB with o 1is much

greater than the varlation of (cLD_min \ with &.
= Ca

A typical example of the experimental drag curves and the theoreti-
cal curves defined by the parameters <C ) CLn_ ) and
Dmin Jog? (~“ID=min )q5’

(ACD/ACLE)C8 is shown in figure 10. Comparison of the data indicates
that the drag charsascterlstics of all-movable wing and body combinations
can be predicted with failr accuracy by the method of the present report
for varying wing deflection as well as for varying angle of attack.

Experimental and theoretical drag curves for wings ln the presence
of bodies are shown in figures 11, 12, and 13. The agreement between
the theoretical anrnd experimental curves is as good as that for the
wing-body combinations.

Lift-Drag Ratio

Variation with angle of attack.- Theoretical and experimental 1ift-
drag ratios for the wing-body combinations are presented as a function
of 1ift coefficient for constant wing deflection in figure 14, In cal-
culating the theoretical (L/D)Ca: cross flow was used for (?Dmin>c

e

and (CLD=miﬁ)Ca and neglected for (ACD/ACL®),. The theoretical

values of (L/D)Ca decreased slightly with increasing 8. This occurs

experimentally for & larger than 4° but for & = 4° the experimental
(r./D) o are often (figs. 1h(i), 14(J), and 1k(k)) somewhat larger than
for = 0. In general, the theoretical and experimental curves are in
good agreement for small & but for & = 14°  the theoretical values of
(L/D)COL for some configurations are as much as 25 percent higher than
the experimental values.

?h*?KWETDEEEgﬁa

-y
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Theoretical and experimental (L/D)s, for combination 6, the

only combination for which negative deflection data are available
for CL:>CLopt’ are shown in figure 14(p) for & = 0 and & = -5°.

This figure shows a significant increase in (L/D)Ca experimentally
for Cp>Crg,y with & = -5° relative to that for & = 0. Although
the theory should not be expected to be strictly applicable at large
1ift coefficients it can be expected to indicate trends. The theoreti-

cal increase in (L/D)g, for negative deflection is somewhat less than
that obtained experimentally. At Cp = 0.95 +the predicted (L/D)Ca

for 8 =-5° is 2 percent higher than for & = 0 and experimentally
the increase is 8 percent.

Theoretical (L/D)maxCa and CLopt cq YET® calculated on the basis

of equations (11), (12), (13), (14), and (16) and are presented together
with experimental quantities in the correlation plots of figures 15
and 16. The theoretical (L/D)maxCCL averages approximetely 10 percent

higher than the experimentel (L/D)maxCa corresponding to the theoreti-

cal (éDmin e, 804 (ACD/ACLZ)Ca tending to be lower than the experi-
mental values. The line of best fit for the (bLOPQ)C correlation
o

points coincides with the line of perfect agreement.

Variation with wing deflection.- Experimental and theoretical 1lift-
drag ratios as a function of 1lift coefficient with wing deflection
variable are shown in figure 17. The curves are presented for the wing-
body combinations of table I for which sufficient experimental data were
available for the necessary cross plots. The experimental and theoreti-
cal curves are in qualitative agreement in that the (L/D)Ca . for Cy,
greater than sbout 0.25 increase with increasing a. Also, Cp for
meximum 1ift-drag ratio increases with increasing a. Quantitatively,
the theoretical (L/D)pg averages approximately 10. percent higher than
the experimental velues over the complete range of Cr,.

Experimental and theoretical (L/D)maxcs and (?Lopt)ca are pre-

sented in the correlation plots of figures 15 and 16. The average
theoretical (L/D) 5 are approximately 9 percent higher than the
experimental values &nd the average theoretical cLOP?)ca are approxi-

mately 3 percent higher than the experimental values.

Yok smgp,
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CONCLUSIONS

A method has been presented for predicting the drag due to 1ift
and the lift-drag ratio of all-movable wing and body comblinations and
all-movable wings in the presence of bodies at supersonic speeds. The
method has been used to calculate these factors for configuratlons for
which experimental data were available. Comparison of the calculated
and experimental data affords the following conclusions:

1. The theoretical method presented can be used to predict the
drag due to 1lift and lift-drag ratio with sufficient accuracy for many
design purposes.

2. Generally, the predicted drag-rise factors were lower than the
experimental values and the predicted lift-drag ratios were correspond-
ingly higher than the experimental velues.

3. The theoretical results indicated that for some wing-body
combinations a small improvement in 1lift-drag ratio could be obtained
with negative wing deflections. 'This was substantiated experimentally
for the wing-body combination for which experimental data were
available.

Ames Aeronsutical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif.
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Figure [7.- Concluded.
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